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C om parison  o f the p/50 values for a series o f  cyanoacrylate derivatives in ch loroplasts iso lated  
from  atrazine susceptib le (wild type) and atrazine resistant (m utant) Brassica napus b iotypes  
reveal that the degree and direction o f discrim ination can vary from  being 200- fold m ore active  
against the wild type to 10-fold m ore active against the m utant. T here appears to be a direct 
correlation betw een  the level o f  inhibitory activity in thylakoids iso la ted  from “su scep tib le” 
chloroplasts and the level o f  d iscrim ination betw een  “su scep tib le” and "resistant” ch loroplasts — 
a correlation which can be im proved by allow ing for variations in m olecular hydrophobicity. 
Studies w ith optically  active ethoxyeth yl-3-a lk y l-2-cyan o-3-a-m ethylb en zylam in o  acrylates sug­
gest that there are specific receptor sites present in both “susceptible" and “resistant” ch loroplasts  
for both the a-m eth ylb en zyl chiral cen tre and the 3-alkyl m oiety . T here is a direct relationship
betw een  p h otosynthetic  electron  transport inhibitory  
isom ers.

Introduction

Many photosynthetic inhibitor herbicides are 
known to act by blocking photosynthetic electron  
transport (PE T) close to photosystem  II reaction  
centres (PS II R C ’s) in the thylakoid m em branes o f  
plant chloroplasts [1]. C om petitive displacem ent 
studies have indicated that a variety o f these PS II 
PET inhibitors, including the ureas, triazines and cy­
anoacrylates, interact with the sam e receptor region  
and this region has been associated with the Dj p ep­
tide o f the PS II RC in a num ber o f plant species [2, 
3]. Such inhibitors are believed  to exert their effect 
by displacing the secondary plastoquinone electron  
acceptor, Q B, from its binding niche near the reac­
tion centre, thus interfering with the electron trans­
port process.

The serine 2 6 4  residue in the D i peptide o f wild type 
chloroplasts has been found to be altered to glycine 
in the analogous peptide isolated from chloroplasts 
o f triazine resistant w eeds [4], M oreover, different 
PET inhibitors show different levels o f discrim ina­
tion betw een wild type and mutant thylakoids even  
though they com petitively displace each other from  
the binding dom ain. Pfister and A rntzen [5] ex ­
plained this differential sensitivity but com petitive  
interaction in terms o f a m odel where part o f each  
inhibitor m olecule interacted with a com m on binding 
dom ain and the remainder o f the m olecule interacted
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specifically e lsew here. Trebst and Draber [6] on the 
other hand suggested that for each class of PS II her­
bicide there w ere m ultiple binding sites to account 
for the differential sensitivity and an overlap o f som e 
o f these sites betw een the different PS II herbicide 
types to account for their com petitive interaction. 
The latter concept is consistent with a recent Q SA R  
analysis o f structure-activity relationships o f amide 
and triazine type PS II herbicides [7].

Previous com parative studies o f the effects o f PET  
inhibitors on wild type and mutant plant and algal 
species have been concerned with com pounds of  
w idely different chem ical structure. This study has 
been focussed on a closely related series o f PET in­
hibitors o f the cyanoacrylate class with the aim of  
exploring differences in detail betw een wild type and 
triazine resistant Brassica  biotypes.

Results

Table I records p /50 data for a series o f 3-alkyl,
3-aralkyl and 3-aryl derivatives o f m ethoxyethyl-2- 
cyano-3-p-chlorobenzylam ino acrylates as inhibitors 
o f photosynthetic electron transport in both wild 
type and m utant Brassica  thylakoids and in pea thy­
lakoids [9] under coupled (basal) conditions. There is 
reasonable agreem ent betw een p /50 values in pea and 
wild type Brassica  thylakoids but values determ ined  
with mutant Brassica  thylakoids are generally low er  
except for the 3-phenyl and 3-benzyl derivatives.

Table II sum m arizes p /50 data for a series o f opti­
cally active ethoxyethyl-3-alkyl-2-cyano-3-a-m ethyl-
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T able I. The effect on P E T  in wild type and m utant Brassica thylakoids o f  
a series o f  3-substituted cyanoacrylates o f  general formula:
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Cl C H ,- N H  CO O  C H , C H , 0  C H ,

CN

C om p ou n d “ 
X  =

p/,0 (Brassica)b 
p /5nBW p /50BM 
(w ild type) (m utant)

A p /50BW- BM p/,o (p ea s)c

H 4.80 3.75 1.05
M e 6.80 5.10 1.70 6.25
Et 7.30 5.50 1.80 7.20
Pr 6.75 5.30 1.45 6 .50
Pr, 8.40 6.75 1.65 8.20
Bu 5.50 4.65 0.85 5 .00
B u s 7.90 6.55 1.35 7.95
B Uj 5 .80 4.90 0 .90 5.35
B u t 4.75 4.15 0 .60 4 .30
2 Pentyl 7.20 5.75 1.45 6.95
3 Pentyl 8.10 6.60 1.50
2 H exy l 6.55 5.65 0.90
Phenyl 4 .70 5 .20 - 0 .5 0 4 .10
B enzyl 4 .10 5.20 - 1.10 3.65

S ynthesis and physical properties o f  new  com pounds will be reported  
e lsew h ere. A ll structures w ere confirm ed by PM R  spectra and gave 
satisfactory m icroanalyses.
C om p oun d s w ere assayed as inhibitors o f the H ill reaction using thy­
lakoids iso lated  from the leaves o f 21 day old  Brassica napus seed lings  
with results expressed  as p/50 values in accord with the experim ental 
procedure described earlier [8], A trazine susceptib le (w ild type) and 
atrazine resistant (m utant) B. napus seed s w ere kindly supplied  by D r. 
John Kirk o f  the C SIR O  D ivision  o f Plant Industry, Canberra.
D ata  from reference [9],

Table II. The effect on PET  in wild type and m utant Brassica thylakoids o f  the R  and S isom ers o f  general formula: 

H

( O V ^ -  NH c o o  c h 2 c h 2 o  c h 2 c h 3

c h 3 ) c = (
X CN

C om pound“

Isom er X

pisn (Brassica)b
j  BW j  BM 

P '50 P'50
(wild type) (m utant)

A p /50BW- BM A p /50B
(S—R isom er) 
wild type m utant

p/so
(peas)

A p /50P
(S —R isom er)

S M e 6.90 5.15 1.75 2.30 1.45 6.2
2.0R Me 4.60 3 .70 0 .90 4 .2

S Et 7.75 5.85 1.90 2.35 1.80 7.1
2.2R Et 5.40 4.05 1.35 4.9

S
R

Pr
Pr

6.45
4.55

4.85
4.15

1.60
0 .40

1.90 0 .70 6.15
4.35

1.8

S Bu 5.05 4.50 0.55 1.05 0.10
4 .85 1.05R Bu 4.00 4.40 - 0 . 4 3 .80

a C om pounds described in reference [10], 
b See foo tn ote  b, T able I. 
c See reference [10],
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benzylam ino acrylates as inhibitors o f photosynthetic  
electron transport in both wild type and mutant B ras­
sica  thylakoids and in pea thylakoids [ 1 0 ] under cou ­
pled conditions. The S isom ers are m ore active than 
the R isom ers as PET inhibitors in all three thylakoid  
system s. M oreover, all the S isom ers and all except 
one o f the R  isom ers are more active against the wild  
type than the mutant Brassica thylakoids.

Discussion

In view  o f the highly conserved nature o f the her­
bicide binding site in plant chloroplasts, it is not 
surprising that cyanoacrylates inhibit photosynthetic  
electron transport at similar levels in thylakoids iso­
lated from Pisum  sativum  (p / 5 0 ) and Brassica napus 
( p / s D  species (see Tables I and II). The slightly  
higher p / 5 0  values usually observed with the brassica 
species could indicate that thylakoids isolated from  
that species are less highly coupled than those iso ­
lated from peas since, under otherw ise com parable 
conditions, p / 5 0  values tend to be greater in uncou­
pled than in coupled system s [1 1 ].

In general, cyanoacrylates behave like triazines in 
being less active PET inhibitors in thylakoids isolated  
from atrazine resistant (m utant) than from atrazine 
susceptible (wild type) Brassica  species. H ow ever, as 
the data in Tables I and II indicate, the degree and 
direction o f discrimination varies from  being 2 0 0 -fold  
m ore active against the wild type (A p / 5oBW-BM =  
+ 2 .3 )  to 10-fold m ore active against the m utant 
(A p / 5 0 BW- BM= - l . l ) .

There appears to be a general relationship b e­
tw een the level o f PET inhibitory activity with wild  
type thylakoids (p /50BVV) and the level o f discrim ina­
tion betw een the wild type and m utant thylakoids 
(A p /50BW-BM) — the more active the inhibitor with 
the wild type species the higher the discrim ination in 
favour o f the wild type. This is show n in Eqn. (1) 
which represents the relationship betw een  p / 5 oBVV and 
A p /5 oBW-BM for all data in T ables I and II.

p /50=  1.38 (± 0 .2 3 )  A p /5 o +  4 .70  (± 0 .2 9 )  (1)
Correlation coefficient, r =  0 .80.

The general trend evident in Eqn. (1) can be 
broadly accounted for in terms o f  the m ultiple site 
binding concept [6 ]. If there are a num ber o f possible  
interacting sites within the herbicide binding dom ain  
and different m olecules can interact with different 
com binations o f them then the sam e m olecule could

also interact with different com binations o f sites, i.e. 
it could interact with the binding domain in different 
ways. T hese interactions could range from being  
highly specific and involving many sites on the recep­
tor peptide down to non-specific where no peptide 
site interactions w ere involved. In all cases, how ever, 
the binding affinity of a m olecule w ould be influ­
enced by its tendency to escape from the aqueous 
m edium  to the non-aqueous mem brane environ­
m ent, i.e ., by its hydrophobicity. For m olecules of 
com parable hydrophobicity it is likely that changing  
environm ents, e.g ., from the wild type to the m utant, 
will have a greater effect on binding affinity and 
hence on A p / 5 0  values the more highly specific the 
interaction, i.e ., the higher the activity. This is in 
accord with the trend o f the relationship in Eqn. (1). 
M oreover, w hen allowance is made for hydrophobic­
ity, the correlation coefficient (r) of the p / 5 0  V5  A p / 5 0  

relationship is further im proved. This is evident from  
a com parison o f Eqn. (2) based on p / 5 0  values for the 
alkyl series excluding the phenyl and benzyl deriva­
tives in Table I with Eqn. (3) based on p / 5 0  values for 
the sam e series corrected for hydrophobicity by sub­
tracting the Hansch Jt value for the alkyl m oiety [12].

p / 5 0  =  2.5 ( ± 0 .6 )  Ap/so +  3.5 ( ± . 8 ) r =  0.78 (2) 
p / 5 0 (corr) =  3.1 (± 0 .4 )  Ap / 5 0  +  0 .8  ( ± .5 ) r  =  0.93 (3)

A  similar im provem ent in correlation coefficient is 
evident betw een Eqn. (4) based on values for the R  
and S optical isom ers o f ethoxyethyl-3-alkyl-3-a- 
m ethylbenzylam ino-2 -cyanoacrylate derivatives in 
Table II and Eqn. (5) based on the tz corrected p / 5 0  

values for the sam e series:
p / 5 0  = 1 -5  ( ± 0 .3 )  A p / 5 0 +  4.1 ( ± -4 )  r =  0.90 (4) 
p / 5 0 (corr) =  2 .0  (± 0 .3 )  Ap / 5 0  +  2 .2  ( ± .3 ) r  =  0.95 (5)

It w ould appear from the relative sensitivity o f  
electron transport in chloroplasts isolated from B ras­
sica biotypes that, in general, cyanoacrylates interact 
m ore specifically with wild type than mutant thy­
lakoids. H ow ever, the converse is true for the 3- 
phenyl and 3-benzyl derivatives recorded in Table I 
which are m ore active PET inhibitors with mutant 
Brassica  thylakoids than with wild type Brassica  or 
pea thylakoids. This suggests that there is a receptor  
site in the mutant thylakoid which is not present in 
the wild type and which is capable o f interacting  
specifically with an aryl or ara alkyl group in the 3 
position o f the cyanoacrylate m olecule.

The differential activity betw een 5  and R optical 
isom ers o f ethoxyethyl-3-alkyl-2-cyano-3-a-m ethyl-
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benzylam ino acrylates with both wild type and m u­
tant Brassica chloroplasts and with pea chloroplasts 
(T able II) im plies that a specific receptor site capa­
ble o f distinguishing betw een the 5  and R isom ers in 
favour o f the 5  isom er is present in both normal and 
mutant biotypes. M oreover, as Fig. 1 shows for both 
the S and R  isom ers with wild type Brassica  thy- 
lakoids and for the S isom er with mutant Brassica 
thylakoids, there is a parabolic relationship betw een  
p /50 and the chain length of the 3-alkyl substituent 
with optim um  activity associated with the ethyl d e­
rivative in each case. Similar parabolic relationships 
for the 3-straight-chain alkyl series have also been  
observed  for other cyanoacrylate derivatives with 
pea thylakoids [11]. A  specific receptor site for the 3- 
alkyl m oiety is therefore likely to be present in both 
norm al and m utant thylakoids. This leads to the con­
clusion that the ability of cyanoacrylates to differ­
entiate betw een the wild type and mutant Brassica  
thylakoids must be due to regions o f the m olecule  
other than the a-m ethylbenzyl chiral centre or the 3 
alkyl m oiety.

The linear rather than parabolic relationship b e­
tw een p /50 and alkyl chain length observed for the R  
isom er with the m utant thylakoids (Fig. 1) suggests 
that the disadvantageous R  conform ation coupled  
with the w eaker binding associated with the mutant 
thylakoids result in a largely non-specific interaction  
primarily influenced by hydrophobicity factors.

O ptical isom ers also show differential herbicidal 
activity. Thus the 5  isom er o f ethoxyethyl-2-cyano-3- 
ethyl-3-a-m ethylbenzylam ino acrylate kills atrazine 
susceptible Brassica napus seedlings in the glass­
house w hen applied post-em ergence at 0.25 kg/ha, 
w hereas the R  isom er shows only minor contact phy­
totoxicity  at 8 kg/ha. Such differentiation is consist-

S and R

Pi 50

CH ,
I

CH
*

NH C O O  C H , C H , 0  C H , C H ,

(C H 2)nH CN

Fig. 1. p/50 values for S and R isom ers o f  ethoxyethyl- 
3-a lkyl-2-cyano-3-a-m ethylbenzylam ino acrylates vs alkyl 
chain length (n ) for both wild type and m utant Brassica 
thylakoids.

ent with that observed betw een  the sam e isom ers as 
PET inhibitors in isolated chloroplast system s (see  
Table II). N either the S or R  isom ers, how ever, have 
any effect at 8 kg/ha on the atrazine resistant B rassi­
ca biotypes.
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